MISSISSIPPI STATE DEPARTMENT OF HEALTH OF MAY -8 AM 8: 09 BUREAU OF PUBLIC WATER SUPPLY CCR CERTIFICATION CALENDAR YEAR 2014 Public Water Supply Name THE WATER SUPPL | 2070016 00 700 2 4 List PWS ID #s for all Community Water Systems | ems included in this CCR | |--|--| | The Federal Safe Drinking Water Act (SDWA) requires each Commun Consumer Confidence Report (CCR) to its customers each year. Deper system, this CCR must be mailed or delivered to the customers, published customers upon request. Make sure you follow the proper procedures we mail a copy of the CCR and Certification to MSDH. Please check all the customers were all the copy of the CCR and Certification to MSDH. | | | Customers were informed of availability of CCR by: (Attach c | | | ☐ Advertisement in local paper (attach copy of ☐ On water bills (attach copy of bill) ☐ Email message (MUST Email the message ☐ Other | to the address below) | | Date(s) customers were informed:/// | / / / | | CCR was distributed by U.S. Postal Service or other direct methods used | | | Date Mailed/Distributed: / / | | | CCR was distributed by Email (MUST Email MSDH a copy) As a URL (Provide URL As an attachment As text within the body of the email message | | | CCR was published in local newspaper. (Attach copy of publis | hed CCR or proof of publication) | | Name of Newspaper: The Calhoun County J | fournal | | Date Published: 4 / 29 / 2015 | | | CCR was posted in public places. (Attach list of locations) | Date Posted: / / | | CCR was posted on a publicly accessible internet site at the fol | lowing address (<u>DIRECT URL REQUIRED</u>): | | CERTIFICATION I hereby certify that the 2014 Consumer Confidence Report (CCR public water system in the form and manner identified above and the SDWA. I further certify that the information included in this the water quality monitoring data provided to the public water Department of Health, Bureau of Public Water Supply. **Double Hards Back Keeper** Name/Title (President, Mayor, Owner, etc.) | d that I used distribution methods allowed by CCR is true and correct and is consistent with | | Deliver or send via U.S. Postal Service:
Bureau of Public Water Supply
P.O. Box 1700
Jackson, MS 39215 | May be faxed to: (601)576-7800 May be emailed to: water.reports@msdh.ms.gov | 2015 MAY -1 PM 2: 08 ## 2014 Annual Drinking Water Quality Report Poplar Springs Water Association PWS#: 070016 & 070024 April 2015 We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Gordo Formation Aquifer. The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Poplar Springs Water Association have received lower susceptibility rankings to contamination. If you have any questions about this report or concerning your water utility, please contact Charles Mahan at 662.682.7747. We want our valued customers to be informed about their water utility. If you want to learn more, please attend the meeting scheduled for August 25, 2015 at 7:00 PM at the Vardaman Community Center. We routinely monitor for constituents in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2014. In cases where monitoring wasn't required in 2014, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the water poses a health risk. In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions: Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG) — The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000. Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000. | Contaminant | Violation
Y/N | Date
Collected | Level
Detected | Range of Detects or
of Samples
Exceeding
MCL/ACL | Unit
Measure
-ment | MCLG | MCL | Likely Source of Contamination | |-------------|------------------|-------------------|-------------------|---|--------------------------|------|-----|--------------------------------| |-------------|------------------|-------------------|-------------------|---|--------------------------|------|-----|--------------------------------| | 8. Arsenic | N | 2014 | 1.1 | No Range | pp | 0 | n/a | 1 | Erosion of natural deposits; runoff
from orchards; runoff from glass
and electronics production wastes | |------------------------------|--------|----------|-------|-------------|-----|---|-----|----------|--| | 10. Barium | N | 2014 | .2175 | .18762175 | ppi | n | 2 | | Discharge of drilling wastes;
discharge from metal refineries;
erosion of natural deposits | | 13. Chromium | N | 2014 | 6.8 | 5.3 – 6.8 | ppl |) | 100 | 10 | Discharge from steel and pulp mills; erosion of natural deposits | | 14. Copper | N | 2012/14 | .3 | 0 | ррі | m | 1.3 | AL=1. | | | 16. Fluoride | N | 2014 | .201 | .181 – .201 | ррі | n | 4 | | Erosion of natural deposits; water
additive which promotes strong
teeth; discharge from fertilizer and
aluminum factories | | 17. Lead | N | 2012/14 | 4 | 0 | ppl | | 0 | AL=1 | Corrosion of household plumbing
systems, erosion of natural
deposits | | 19. Nitrate (as
Nitrogen) | N | 2014 | .09 | No Range | ıqq | n | 10 | 1 | Runoff from fertilizer use;
leaching from septic tanks,
sewage; erosion of natural
deposits | | 20. Nitrite (as
Nitrogen) | N | 2014 | .03 | No Range | ррі | n | 1 | , | Runoff from fertilizer use;
leaching from septic tanks,
sewage; erosion of natural
deposits | | 21. Selenium | N | 2014 | 3.5 | No Range | ppl |) | 50 | 5 | Discharge from petroleum and
metal refineries; erosion of natura
deposits; discharge from mines | | Disinfectio | on By- | Products | S | | | | | | | | 81. HAA5 | N | 2014 | 3 | No Range | ppb | 0 | | 60 | By-Product of drinking water disinfection. | | Chlorine | N | 2014 | .60 | .30 - 60 | ppm | 0 | MDF | RL = 4 1 | Water additive used to control microbes | . | PWS ID #00 | 70024 | | | TEST RESULTS | | | | | | |-------------------|------------------|-------------------|-------------------|---|--------------------------|------|--------|--|--| | Contaminant | Violation
Y/N | Date
Collected | Level
Detected | Range of Detects or
of Samples
Exceeding
MCL/ACL | Unit
Measure
-ment | MCLG | MCL. | Likely Source of Contamination | | | Inorganic Co | ontami | inants | | | | | | | | | 8. Arsenic | N | 2014 | .9 | No Range | ppb | n/a | 10 | Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes | | | 10. Barium | N | 2014 | 0.218 | No Range | ppm | 2 | 2 | Discharge of drilling wastes;
discharge from metal refineries;
erosion of natural deposits | | | 13. Chromium | N | 2014 | 4.8 | No Range | ppb | 100 | 100 | Discharge from steel and pulp mills; erosion of natural deposits | | | | N | 2012/14 | .2 | 0 | ppm | 1.3 | AL=1.3 | Corrosion of household plumbing
systems; erosion of natural
deposits; leaching from wood
preservatives | | | 16. Fluoride | N | 2014 | .165 | No Range | ppm | 4 | 4 | Erosion of natural deposits; water
additive which promotes strong
teeth; discharge from fertilizer and
aluminum factories | | | 17. Lead | N | 2012/14 | 1 | 0 | ppb | 0 | AL≂15 | Corrosion of household plumbing | | | tural deposits; runoff | | | | |---|---|--|--| | ; runoff from glass
as production wastes | | | | | drilling wastes; | | | | | m metal refineries;
ural deposits | | | | | m steel and pulp | | | | | of natural deposits
nousehold plumbing | | | | | sion of natural | | | | | ching from wood | | | | | tural deposits; water | | | | | n promotes strong
ge from fertilizer and | | | | | tories | | | | | nousehold plumbing
sion of natural | | | | | | | | | | ertilizer use;
ı septic tanks, | | | | | ion of natural | | | | | ertilizer use; | | | | | septic tanks, | | | | | ion of natural | | | | | m petroleum and | | | | | es; erosion of natural
charge from mines | | | | | | | | | | | | | | | nking water | | | | | | | | | | ed to control | | | | | | | | | | | 1 | | | | | | | | | | | | | | of Contamination | tural deposits; runoff | | | | | ; runoff from glass
as production wastes | | | | | drilling wastes; | | | | | n metal refineries;
ural deposits | | | | | m steel and pulp | | | | | of natural deposits
nousehold plumbing | | | | | ion of natural | | | | | hing from wood | | | | | ural deposits; water | | | | | n promotes strong
ge from fertilizer and | | | | | tories | | | | | ousehold plumbing | systems, erosion of natu
deposits | ıral | |------------------------|--------|--------|-----------|----------|-----|---|----|---|------------| | 21. Selenium | N | 2014 | 3.2 | No Range | ppb | | 50 | 50 Discharge from petroleu
metal refineries; erosion
deposits; discharge from | of natural | | | | | | | | | | | | | Disinfecti | on By- | Produc | ts | | | | | | | | Disinfecti
81. HAA5 | on By- | Produc | <u>ts</u> | No Range | ppb | 0 | 60 | By-Product of drinking water disinfection. | r | ^{*} Most recent sample. No sample required for 2014. As you can see by the table, our system had no contaminant violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some constituents have been detected however the EPA has determined that your water IS SAFE at these levels. We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. We did complete the monitoring requirements for bacteriological sampling that showed no coliform present. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Please contact 601.576.7582 if you wish to have your water tested. All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1-800-426-4791. The Poplar Springs Water Association works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future. | • | | | |---|--|--| Poplar Springs Water Assn. Drinking Water Quality Report | and services well deliver to you many day. One constant would be report. This report is designed to intom you should be quality and | | |---|----| | and senious we deliver to you every day. Our constant goal is to provide you with a safe and dependable sopply of driving rests. It is recorded to indom you should be greatly and | | | ware you to industrial the profit he make to made the recent the unit of the state supply of arriving water to | ¥4 | | want you to understand the priorie we make to continuely improve the water transment process and protect our water resources. If
the committed to amount the quarty of more make. Our water to prove the water transment process and protect our water resources. If | 40 | | PWS IDM | | | | TEST RES | ULTS | | | | |----------------------------|---------|----------|----------|---|-----------|------|-------|---| | Community | Yes | Colected | Delected | Range of Detects
2 of Service
Extracting
MCL/AGE | Unit Card | NO.0 | 1961 | Enty Server of Construction | | Inorganic | Contain | inents | | | | | | | | | | | | 3 | · · | | | | | 1 Annak | N | 3614 | 11 | No flarge | 100 | 100 | 16 | English of reduced deposition our
home contents, condition plan
(O) electronic production was | | IO BANK | N | 5014 | \$176 | 1474 - 2176 | acm | , | 1 | Districted of eithing ments of the party | | 1) Overwa | | 2014 | •• | 69-94 | 200 | 100 | 100 | Decharge from sinul and pulp
mile, Moston of catherin deposit | | 14. Capper | k | 2013/14 | • | 9
14 | E040 | . " | AI-13 | Contocion of naturality plumps
syntams, artisted of netural
deposits leading from wood
organizations | | H. Flath | * | 2014 | .201 | .101-201 | 004 | 7 1 | • | Entire of natural deposits, and edition which provides \$10000 | | (f. Laid | " | 201511 | * | • | F90 | 6 | ALPIE | Conceiled of Advanced Charges
Systems, strains of Advanced
systems, strains of Advanced | | IF. Heraig (st
hatoger) | A | 2014 | .mi | No Range | 2011 | 10 | 10 | Seconds R.mail Spec lanker use, landing from page tacks, second second undersi second second undersi | | O NAME (as | 4 | 2014 | 63 | No Auror | gen. | 1 | \$ | Runoff from Services size,
benching from series fand a
services, enserted of request
percept. | | i summ | N | юн | 76 | No Range | igo | , 10 | | Docharge from potitions and
metal refragness account of
natural deposits shockarge box | | Comment | Volume | Colecte | Celested
Celested | Farge of Debut
Set Company
Commany
MCS/MCS | 100 UV | MCX is | - WCI | Linely Bounce of Conservation | |--------------|--------|---------|----------------------|---|--------|-------------|---------|---| | Inorganic | Contu | ulanala | | | | | | | | 1 Annx | N | 7011 | 1 | No Ruige | the | 1/2 | 1 | Eroson of recital papers, non- | | 14 Bartin | H | 2013 | 0.614 | No Range | . ppa | 1 | 1 | Designed on the production was
Designed to come and con-
cepture from making inches. | | 13. Chyprim | N | 1611 | 44 | Ho Raiya | 120 | 100 | 100 | Deckage sore that and pulp | | la Cappai | | | | 100 | | | PANIA. | Compain of november parton
lytoros seculos of easys
contests, beauty bon wood | | 14 Facility | W., | 2014 | 2005.2 | Hit Flange | pp. | | | E realize of helped deposition was
helped phints promised strong
least depote par long legister.
and standard long legister. | | 17 (pad | 1 | 2018/54 | 100 | | 200 | 5 · · · · b | AL=15 | Committee to consequent primates
lyniams, expense of technol. | | l Spinited | N . | 3014 | 33 | Ho Kunga | age | 14 | | Dectaring Futer patroleums and
head reference product of
habital deposits Dectarge from
2008 | | Disinfection | ву-Р | roducie | | | | | | | | 1. HAMA | 1 | 3018 S | | Fares p | * | 9 | , Rij | Property develop wow | | He/ME | M. | 2014 | W 1 | | 99 | 0 10 | 4 1 1 2 | Her edd Dre Least to control |